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A B S T R A C T

Background: Diabetic kidney disease (DKD) is a global public health concern. Environmental factors are 
increasingly recognized as significant risk factors that cannot be overlooked, and certain environmental pol
lutants exhibit endocrine-disrupting properties. Previous research on the association between endocrine- 
disrupting chemicals (EDCs) and DKD has been notably limited.
Methods: This study investigated the association between exposure to 25 EDC metabolites and DKD in 1421 U.S. 
adults from the 2015–2018 National Health and Nutrition Examination Survey (NHANES). We used logistic 
regression, restricted cubic spline regression, weighted quantile sum (WQS) regression, and bayesian kernel 
machine regression (BKMR) models to assess the association between individual and co-exposure to multiple 
EDCs and DKD. Subgroup analyses and interaction tests were performed to investigate whether this association 
was stable across the population. Additionally, mediation analysis was used to explore the mediating role of 
serum globulins in the association between Pb exposure and DKD.
Results: In logistic regression models, N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA), N-Acetyl-S-(4-hydroxy- 
2-butenyl)-L-cysteine (MHBMA3), Phenylglyoxylic acid (PGA), and lead (Pb) were significantly positively 
associated with diabetes. Restricted cubic spline (RCS) analyses also revealed significant non-linear positive 
associations between 2HPMA, MHBMA3, and DKD. Perfluorohexane sulfonic acid (PFHxS), n-perfluorooctanoic 
acid (n-PFOA), n-perfluorooctane sulfonic acid (n-PFOS), and Perfluoromethylheptane sulfonic acid isomers (Sm- 
PFOS) were significantly negatively associated with DKD. Furthermore, co-exposure to metals and metalloid was 
positively associated with DKD in both the WQS regression and the BKMR models, with Pb as the primary 
contributing factor. Mediation analysis showed that globulin mediated the association between Pb exposure and 
DKD, with a mediation proportion of 7.25 % (P = 0.046). Co-exposure to perfluoroalkyl and polyfluoroalkyl 
substances (PFASs) was negatively correlated with DKD, and subgroup analyses revealed that this correlation 
was more pronounced in the obese group (BMI ≥30 kg/m²). The BKMR analysis revealed potential interactions 
among various chemical compounds, such as N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA), 2-Methylhippu
ric acid (2MHA), N-Acetyl-S-(4-hydroxy-2-methyl-2-butenyl)-L-cysteine (IPM3), mercury (Hg), and cadmium 
(Cd), in a model simulating co-exposure to metals and metalloid, as well as to volatile organic compound me
tabolites (mVOCs).
Conclusion: The findings suggest an association between individual or co-exposure to EDC metabolites and DKD, 
providing valid evidence for DKD prevention from the perspective of EDCs exposure. However, more prospective 
studies are needed to elucidate the potential mechanisms underlying these findings.
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1. Introduction

Diabetes mellitus (DM) is one of the most common and fastest- 
growing diseases globally, with an estimated 578 million people 
worldwide projected to have diabetes by 2030 (Saeedi et al., 2019). 
Diabetic kidney disease (DKD), a major microvascular complication of 
DM, is characterized by persistent albuminuria and a decline in 
glomerular filtration rate (GFR), significantly contributing to end-stage 
kidney disease (Fu et al., 2019; Lin et al., 2018). DKD represents a major 
global health challenge with a substantial economic burden (Reutens, 
2013). Therefore, investigating factors that influence DKD is critical for 
slowing its progression and improving the quality of life for patients.

Certain metals, metalloids, volatile organic compounds (VOCs), and 
perfluoroalkyl and polyfluoroalkyl substances (PFASs) are endocrine- 
disrupting chemicals (EDCs) that can interfere with hormone func
tions, induce oxidative stress, and increase the risk of metabolic dis
turbances (Cano et al., 2021; Liu et al., 2012; Wei et al., 2023). DKD is a 
common manifestation of underlying systemic diseases, such as meta
bolic syndrome and endocrine disorders.

Emerging studies have shown that VOCs emitted from industrial 
activities and transportation are linked to various health problems, 
including kidney and liver damage (Aivalioti et al., 2010). Certain VOCs, 
such as BTEXS (benzene, toluene, ethylbenzene, xylene, and styrene) 
and chlorinated benzenes, are nephrotoxic (Aivalioti et al., 2010; den 
Besten et al., 1991; Shi et al., 2013). In an environmental study, urinary 
VOC metabolites (mVOCs) were found to be associated with renal 
damage, such as albuminuria and a reduced estimated Glomerular 
Filtration Rate (eGFR) (Lee et al., 2020).

Trace metals and metalloids, such as cadmium (Cd), arsenic (As), 
lead (Pb), and mercury (Hg), found in industrial waste and food, act as 
endocrine disruptors and are linked to chronic diseases, including dia
betes and kidney disease (Błażewicz et al., 2024; Clemens and Ma, 
2016). Cd, As, and Hg act as endocrine disruptors, elevating the risk of 
metabolic syndrome, insulin resistance, type 2 diabetes, and associated 
kidney diseases by affecting signaling pathways such as PI3K/AKT, 
PPARγ, and NF-κB/PTEN (Haidar et al., 2023). A study by Antonio 
Planchart et al. found that Pb-exposed cultured islets of Langerhans 
exhibited decreased cell viability, impaired insulin secretion, and higher 
baseline insulin levels and reactive oxygen species (ROS). Pb exposure in 
adolescents and adults can cause insulin resistance (Planchart et al., 
2018). Selenoprotein levels show a U-shaped relationship with insulin 
sensitivity; both low and high selenium levels may increase the risk of 
type 2 diabetes (Rayman, 2012; Zhang et al., 2023). Inflammatory re
sponses and oxidative stress play key roles in the pathogenesis of DKD 
(Brownlee, 2005; Jha et al., 2016). Experimental evidence indicates that 
Fyn phosphorylation, which regulates transglutaminase 2 phosphory
lation, affects autophagy and p53 signaling in DKD development 
(Uehara et al., 2023). Furthermore, globulins may impact DKD via 
inflammation and oxidative stress (Khater et al., 2021; Wang et al., 
2022). Pb exposure induces ROS generation and promotes inflammatory 
responses. Hence, we evaluated whether serum globulins and oxidative 
stress markers mediate the relationship between Pb and DKD.

PFASs are widely used in industrial and consumer products, such as 
polishes and food packaging (Shankar et al., 2011). Animal and in vitro 
experiments have shown that exposure to PFASs may cause congestion 
and edema in the renal parenchyma of rats, as well as alterations in 
endothelial cell permeability, which in turn affects renal function (Cui 
et al., 2009; Hu et al., 2003). Previous epidemiological studies on PFASs 
and renal function have produced mixed results. One study found a 
negative correlation between certain PFASs and eGFR (Shankar et al., 
2011), while another observed an inverted U-shaped relationship be
tween PFASs and eGFR during the progression of chronic kidney disease 
(Jain and Ducatman, 2019a).

Humans in industrial or heavily trafficked areas may be exposed to 
both VOCs and metals in certain environments. Several epidemiologic 
studies have explored the association between VOCs or metals and 

kidney or diabetic nephropathy. However, few have investigated the co- 
exposure to VOCs and metals in relation to DKD. Upon reviewing the 
references, we found that there might be competing binding and binding 
reactions between VOCs and metals (Bridges and Zalups, 2005; Clarkson 
and Magos, 2006; Wu et al., 2021). Therefore, it is valuable and 
meaningful to explore the association between co-exposure to both 
substances and DKD. Unfortunately, we could not explore the associa
tion between the co-exposure of PFASs, mVOCs, metals, and metalloids 
with DKD due to sample size limitations.

Most studies have focused on the effects of individual chemicals, but 
real-world exposure involves multiple chemicals, which may interact in 
additive, synergistic, or antagonistic ways. We employed logistic 
regression, restricted cubic spline (RCS) regression, weighted quantile 
sum (WQS), and Bayesian Kernel Machine Regression (BKMR) models to 
explore both the correlation between individual EDCs and DKD, as well 
as the correlation between four exposure models (co-exposure to PFASs, 
co-exposure to mVOCs, co-exposure to metals and metalloid, and a 
combined co-exposure model encompassing mVOCs, metals, and 
metalloid) and DKD. Additionally, we further explored the possible 
mediators between EDCs and DKD.

2. Method

2.1. Study design and participants

Data for this study were obtained from NHANES, a nationally 
representative cross-sectional survey conducted by the National Center 
for Health Statistics (NCHS) to assess the nutritional status and health of 
adults and children in the United States. The study protocol was 
approved by the Institutional Review Board of the NCHS, and written 
consent was obtained from all participants (https://www.cdc.gov/nch 
s/nhanes/irba98.htm). Based on the available data on EDCs and dia
betes diagnostics, we included two cycles (2015–2018) of NHANES data 
for analysis. Among the 19,225 participants, 7937 participants under 20 
years of age and 125 pregnant participants were initially excluded. Next, 
we excluded 810 participants with missing urinary albumin to creati
nine ratio (ACR) data, 3 with missing diabetes diagnostic information, 
8663 without a diabetes diagnosis, and 266 without any urinary mVOCs, 
blood metals/metalloids or serum PFAS metabolites data. Finally, 1421 
participants were included in this study (Fig. 1).

2.2. Exposure ascertainment

The study measured the concentrations of urinary volatile organic 
compound metabolites (mVOCs), blood metals and metalloids, and 
serum perfluoroalkyl and polyfluoroalkyl substances (PFASs) in samples 
from NHANES participants, with only chemicals having a detection rate 
of ≥ 85 % considered for the study of their association with DKD. Ulti
mately, 15 urinary mVOCs (2MHA, 3,4-MHA, AAMA, AMCA, ATCA, 
SBMA, CEMA, DHBMA, 2HPMA, 3HPMA, IPM3, MA, MHBMA3, PGA, 
and HPMM), 5 serum PFASs (PFHxS, PFNA, n-PFOA, n-PFOS, and Sm- 
PFOS), and 5 blood metals and metalloid (Lead (Pb), Cadmium (Cd), 
Mercury (Hg), Selenium (Se) and Manganese (Mn)) were evaluated in 
this study. Abbreviations and full titles for each EDC metabolite are 
provided in the Supplementary Material. EDC concentrations below the 
lower detection limit (LLOD) are assigned a value equal to LLOD/√2, as 
recommended by NHANES (Hornung and Reed, 1990; Lei et al., 2023). 
The mVOCs in urine were measured by ultra-performance liquid chro
matography coupled with electrospray tandem mass spectrometry 
(UPLC-ESI/MSMS). The metals and metalloids in whole blood were 
measured directly by mass spectrometry following a simple dilution 
sample preparation step. Serum PFASs were measured by online solid 
phase extraction coupled with high-performance liquid 
chromatography-turbo ionspray ionization-tandem mass spectrometry 
(online SPE-HPLC-TIS-MS/MS). Detailed information on the EDC labo
ratory methodology is provided in the Supplementary Material or on the 
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NHANES website (http://www.cdc.gov/nchs/nhanes). Urine mVOC 
samples were first corrected by urinary creatinine and then 
log-transformed, whereas serum PFASs, blood metals and metalloid 
samples were log-transformed directly to achieve a normal distribution.

2.3. Definition of diabetic kidney disease

Based on the available NHANES questionnaire and laboratory data, 
and by the criteria set by the American Diabetes Association and pre
vious studies, individuals meeting any of the following criteria were 
classified as having diabetes mellitus: (1) fasting plasma glucose (FPG) 
≥ 7.0 mmol/L, or (2) glycosylated hemoglobin A1c (HbA1c) ≥ 6.5 %, or 
(3) a prior diagnosis of diabetes mellitus, or (4) current use of medica
tions for diabetes treatment (American Diabetes Association, 2021). 
Diagnostic criteria for diabetic kidney disease (DKD): (1) Confirmed 
diagnosis of diabetes, and (2) urine albumin to creatinine ratio (ACR) 
≥ 30 mg/g or estimated glomerular filtration rate (eGFR) 
≤ 60 mL/min/1.73 m², or both (De Boer et al., 2011). For eGFR calcu
lation, we utilized the Chronic Kidney Disease Epidemiology Collabo
ration (CKD-EPI) equation (Levey et al., 2009), as follows: 

eGFR CKD− EPI（mL/ min /1.73 m2）= 141 × min(Scr/κ, 1)α × max 
(Scr/κ, 1)-1.209 × 0.993Age × 1.018 [if female] × 1.159 [if black]          

where Scr is serum creatinine, κ is 0.7 for women and 0.9 for men, α is 
− 0.329 for women and − 0.411 for men, min indicates the minimum 
value of Scr/κ or 1, and max indicates the maximum value of Scr/κ or 1.

2.4. Potential confounders

Confounders were selected based on previous research findings and 
clinical expertise (Guo et al., 2022, 2023; Lei et al., 2023; Li et al., 2023; 
Lv et al., 2023), as well as utilizing the EmpowerStats software: a co
variate is included if it satisfies either of the following criteria: either the 
inclusion of the covariate in the base model or its removal from the full 
model has an impact on the regression coefficient of X that is greater 
than 10 %, or the p-value for the regression coefficient of the covariate 
with respect to Y is less than 0.1. Based on this criterion, we finalized the 
covariates to be considered in the study to include age, sex, race, edu
cation level, marital status, poverty-income ratio (PIR), body mass index 
(BMI), hypertension, hyperlipidemia, smoking status, alcohol intake, 
physical activity (PA), systemic immune-inflammation index (SII), sys
temic inflammation response index (SIRI), homeostatic model assess
ment of insulin resistance (HOMA-IR), serum creatinine (SCR), 
hemoglobin A1c (HbA1c), serum uric acid (SUA), blood urea nitrogen 
(BUN), and high-sensitivity c-reactive protein (hs-CRP).

Among these covariates, Race was categorized into the following five 
groups: Mexican American, other Hispanic, non-Hispanic White, non- 
Hispanic Black, and other Race. In addition to this, education level 
was categorized as less than high school graduate, high school graduate 
or equivalent, above high school. Marital status was categorized as 
marry/conhabity, widowed/divorced/separated, and never. PIR was 
categorized into three groups (<1.3, 1.3–3.5, ≥3.5). BMI (kg/m2) was 
specifically calculated as weight (kg) divided by the square of height 
(m). Hypertension was defined as systolic blood pressure (SBP) 
≥ 130 mmHg and/or diastolic blood pressure (DBP) ≥ 80 mmHg after 
three consecutive measurements (Whelton et al., 2018) or a previous 

Fig. 1. The flowchart for screening participants from NHANES 2015–2018; Abbreviations: ACR, albumin to creatinine ratio; mVOCs, volatile organic compound 
metabolites; PFASs, Perfluoroalkyl and polyfluoroalkyl substances.
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diagnosis of hypertension. Hyperlipidemia was defined as total choles
terol (TC) ≥ 240 mg/dL, triglycerides (TG) ≥ 200 mg/dL, low-density 
lipoproteins (LDL-C) ≥ 160 mg/dL, high-density lipoproteins (HDL-C) 
< 40 mg/dL, or a previous diagnosis of hyperlipidemia. Based on the 
questionnaire data, smoking status was categorized into the following 
three groups: never (<100 cigarettes in lifetime), former (≥100 ciga
rettes in lifetime, but now quit), and current (≥100 cigarettes in lifetime, 
still smoking) (Liu et al., 2024). Alcohol intake was categorized as none 
(never drink alcohol), moderate (≤1 drink/day for women and ≤2 
drinks/day for men), and heavy (>1 drink/day for women and >2 
drinks/day for men) (Chen et al., 2019). Based on the physical activity 
questionnaire data we categorized PA into the following four groups 
based on the amount of time spent in moderate to vigorous physical 
activity (MVPA) per week: no MVPA (<10 points/week), some MVPA 
(10–149 points/week), meets MVPA (150–300 points/week), exceeds 
MVPA (>300 points/week) (Gorzelitz et al., 2022; Piercy et al., 2018). 
In addition, the homeostasis model assessment of insulin resistance 
(HOMA-IR) is calculated by multiplying fasting plasma insulin by fasting 
plasma glucose and dividing by 22.5 (Wallace et al., 2004). The specific 
formulas for calculating the systemic immune-inflammation index (SII) 
and systemic inflammation response index (SIRI) are as follows (Cheng 
et al., 2023): 

SII = (platelet count × neutrophil count)/lymphocyte count                 

SIRI = (neutrophil count × monocyte count)/lymphocyte count           

Finally, we employed multiple imputations for the missing de
mographic covariates to fill in the missing values.

2.5. Statistical analysis

In descriptive analyses, we analyzed continuous and categorical 
variables with the t-test and the chi-square test, respectively, reporting 
mean and standard deviation for continuous variables and frequency (n) 
and percentage (%) for categorical variables. The concentrations of 
blood metals and metalloid, serum PFASs, and urinary creatinine- 
corrected mVOCs, after log transformation, are divided into quartiles 
(Q1: P0–25, Q2: P25–50, Q3: P50–75, Q4: P75–100). Logistic regression 
models were used to scrutinize the connection between log-transformed 
EDC metabolites and DKD, and the strength of the association was 
determined with the odds ratio (OR) and confidence interval (CI). Three 
regression models were utilized as follows: Model 1 was unadjusted for 
covariates; Model 2 enhanced Model 1 by including age, sex, race, ed
ucation level, marital status, PIR, and BMI; and Model 3 further 
augmented Model 2 by integrating hypertension, hyperlipidemia, 
smoking status, alcohol intake, physical activity, SII, SIRI, HOMA-IR, 
SCR, HbA1c, SUA, BUN, hs-CRP.

To further investigate the dose-response relationship between EDCs 
and DKD, we employed a restricted cubic spline (RCS) model using the R 
package "rcssci." Four knots were set at the 5th, 35th, 65th, and 95th 
percentiles in the models, respectively.

In addition, we conducted subgroup analyses of log-transformed EDC 
metabolites and examined their interactions with age, gender, body 
mass index, HbA1c, and HOMA-IR.

Weighted quantile sum (WQS) regression was applied to analyze the 
association of four co-exposure patterns (co-exposure to 15 mVOCs, co- 
exposure to 5 metals and metalloid, co-exposure to 5 PFASs, and a 
combined co-exposure model encompassing 15 mVOCs, 5 metals and 
metalloid) with DKD. R package (“gWQS”) grouping the different me
tabolites of EDCs in each exposure mode into ordered variables (quar
tiles), with 60 % of the participants as the validation set and 40 % of the 
participants as the training set, and 1000 bootstrap runs were performed 
to calculate the weighted linear index which represented whole body 
burden of chemicals co-exposure. Additionally, the weights of individual 
EDC metabolites (ranging from 0 to 1) calculated by the model showed 
the extent of their contribution to the WQS index.

We applied Bayesian Kernel Machine Regression (BKMR) (Bobb 
et al., 2015) to investigate (1) the combined effect of co-exposure to 15 
mVOCs, co-exposure to 5 metals and metalloid, co-exposure to 5 PFASs, 
and co-exposure model encompassing 15 mVOCs, 5 metals and metal
loid, these four types of co-exposure patterns on DKD, (2) the impact of 
each chemical as part of the co-exposure of EDCs on DKD, and (3) po
tential interactions between the different chemicals. The BKMR com
bines Bayesian and statistical approaches by iteratively regressing 
exposure-response functions with a Gaussian kernel function to fully 
account for potential nonlinear relationships and interactions among 
EDC metabolites. Based on the similar exposure sources and the collin
earity among chemicals identified by Pearson’s correlation, we further 
grouped the log-transformed EDC metabolites within each of the four 
exposure patterns previously identified. Among the co-exposure to 15 
mVOCs model: group 1 included 3HPMA, IPM3, MHBMA3, HPMM, 
group 2 included 2MHA, 3,4-MHA, AMCA, DHBMA, 2HPMA, MA, PGA, 
and group 3 included AAMA, ATCA, SBMA, CEMA. The co-exposure to 5 
metals and metalloid model: Pb and Cd were categorized in group 1, 
while Hg, Se, and Mn were categorized in group 2. The co-exposure to 5 
PFASs model: Sm-PFOS, n-PFOS were categorized in group 1, with 
PFHxS, PFNA, and n-PFOA categorized in group 2. The co-exposure to 
15mVOCs and 5 metals and metalloid model: we categorized 2MHA, 3, 
4-MHA, AAMA, AMCA, ATCA, SBMA, CEMA, DHBMA, 2HPMA, 
3HPMA, IPM3, MA, MHBA3, PGA, and HPMM into group1, whereas Pb, 
Cd, Hg, Se, and Mn were grouped into group2. The BKMR model 
calculated the group posterior inclusion probability (groupPIP) for the 
probability of inclusion between each co-exposure group and the con
ditional posterior inclusion probability (condPIP) for the probability of 
inclusion of each chemical within the group after 10,000 iterations using 
a hierarchical variable selection approach. The PIP values represented 
the significance of the contribution of individual exposure variables to 
the outcome.

After adjusting for all covariates, we examined the potential medi
ating effect of serum globulins and oxidative stress products (serum 
bilirubin, gamma-glutamyl transferase) on the association between Pb 
exposure and DKD using parallel mediation analysis (utilizing the R 
package “mediation”). In our research, we applied the quasi-Bayesian 
Monte Carlo method with 1000 simulations based on normal approxi
mation for parallel mediation analysis. The total effect (TE) of Pb (X) on 
DKD (Y) was divided into direct effect (DE) and indirect effect (IE), with 
the ratio of IE to TE representing the proportion of mediation mediated 
by the mediator (M).

All analyses and plots were performed with the use of R software 
(version 4.3.1), EmpowerStats (http://www.empowerstats.com), ’Wu 
Kong’ platform (https://www.omicsolution.com/wkomics/main), and 
GraphPad Prism (version 9.0.0). P < 0.05 was statistically significant.

3. Results

3.1. Participant characteristics and EDC metabolites profiles

1421 participants with diabetes mellitus were enrolled in NHANES 
2015–2018. The demographic characteristics of the two groups, DKD 
participants (n = 575) and non-DKD participants (n = 846) are shown 
in Table 1. The results indicated that there were statistically significant 
differences between the two groups in age, sex, race, marital status, PIR, 
smoking status, alcohol intake, hypertension, HbA1c, HOMA-IR, hs- 
CRP, ACR, Scr, eGFR, SUA, BUN, SII, SIRI, Hb (hemoglobin), ALB (al
bumin), ALP (alkaline phosphatase), ALT(alanine aminotransferase), 
GLB (Globulin), LDH (lactate dehydrogenase), potassium, iron, TC, TG, 
HDL-C and LDL-C. The DKD group was more likely to be older, male, 
non-Hispanic white, and have hypertension compared to the non-DKD 
group. In addition, participants with DKD typically had higher levels 
of HbA1c, HOMA-IR, TyG index (triglyceride glucose index), hs-CRP, 
SUA, BUN, ALP, TG, GLB, LDH, potassium, SII, and SIRI, and lower 
levels of ALT, TC, HDL-C, LDL-C, and iron (all p < 0.05).
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The geometric mean concentrations and distribution characteristics 
of the metabolites of EDCs are presented in Table S1 of the Supple
mentary Material. The results showed that the detection rates of urinary 
creatinine-corrected mVOCs ranged from 89.35 % to 100 %, serum 
PFASs ranged from 96.09 % to 98.77 %, and the detection rates of blood 
metals and metalloid detection rate was 85.55–100 %. In addition to 
this, the highest geometric mean concentration of urinary creatinine- 
corrected mVOCs was DHBMA, while HPMM, 3HPMA, and PGA were 
ranked second, third, and fourth in that order. n-PFOS and Sm-PFOS had 
the highest concentrations in PFASs. The results showed that the con
centration of Se was almost more than 20 times higher than other blood 
trace elements among the blood metals and metalloids detected.

3.2. Association between EDC metabolites and DKD

We grouped EDC metabolites into quartiles (Q1: P0–25, Q2: P25–50, 
Q3: P50–75, Q4: P75–100) after urinary creatinine correction and Log 
transformed and then evaluated the association between individual 
EDCs and DKD by logistic regression models. The results showed that 
exposure to EDC metabolites was significantly associated with DKD 
(Table 2 and Supplementary Table S2).

There were significant associations between mVOCs and DKD. In 
model 3, adjusted for all covariates, 2HPMA (Q2, Q3, Q4), MHBMA3 
(Q3, Q4), and PGA (Q4) showed significant associations with DKD and 
were similar to the significance observed in the unadjusted model 1. 
Compared to the first quartile (Q1), 2HPMA (Q4, OR: 2.43, 95 % CI: 
1.12–5.24), MHBMA3 (Q4, OR: 2.63, 95 % CI: 1.16–5.98), and PGA (Q4, 
OR: 2.59, 95 % CI: 1.20–5.57) were positively correlated with DKD. 
Additionally, significant dose-response relationships were observed for 

Table 1 
Characteristics of the patients with Diabetes mellitus in the NHANES 
2015–2018.

Characteristics Non-DKD 
(n = 846)

DKD 
(n = 575)

P-value

Age（years） ​ 59.50 
± 12.47

66.48 
± 11.61

< 0.001

Sex, n (%) Male 444 (52.48) 342 (59.48) 0.009
​ Female 402 (47.52) 233 (40.52)
Race, n (%) Mexican 

American
164 (19.38) 100 (17.39) 0.001

​ Other Hispanic 106 (12.53) 56 (9.74)
​ Non-Hispanic 

White
223 (26.36) 212 (36.87)

​ Non-Hispanic 
Black

202 (23.88) 119 (20.70)

​ Other Race 151 (17.85) 88 (15.30)
Education level, n 

(%)
Less than high 
school graduate

241 (28.49) 170 (29.57) 0.573

​ High school 
graduate or 
equivalent

196 (23.17) 143 (24.87)

​ Above high 
school

409 (48.34) 262 (45.56)

Marital status, n 
(%)

Marry/ 
Conhabity

554 (65.48) 332 (57.74) < 0.001

​ Widowed/ 
Divorced/ 
Separated

206 (24.35) 199 (34.61)

​ Never 86 (10.17) 44 (7.65)
PIR, n (%) ＜1.3 259 (30.61) 201 (34.96) 0.004
​ 1.3–3.5 347 (41.02) 255 (44.35)
​ ≥ 3.5 240 (28.37) 119 (20.69)
Smoking status, n 

(%)
Never 447 (52.84) 275 (47.83) 0.022

​ Former 274 (32.39) 227 (39.48)
​ Now 125 (14.77) 73 (12.69)
Alcohol intake, n 

(%)
None 173 (20.45) 152 (26.44) 0.026

​ Moderate 229 (27.07) 151 (26.26)
​ Heavy 444 (52.48) 272 (47.30)
Hypertension, n 

(%)
No 315 (37.23) 137 (23.83) < 0.001

​ Yes 531 (62.77) 438 (76.17)
Hyperlipidemia, n 

(%)
No 557 (65.84) 360 (62.61) 0.212

​ Yes 289 (34.16) 215 (37.39)
PA, n (%) No MVPA 521 (61.58) 394 (68.52) 0.062
​ Some MVPA 160 (18.91) 88 (15.30)
​ Meets MVPA 103 (12.18) 56 (9.74)
​ Exceeds MVPA 62 (7.33) 37 (6.44)
BMI (kg/m2) ​ 32.07 

± 7.35
32.37 
± 7.62

0.453

HbA1c ​ 7.22 
± 1.56

7.81 ± 1.98 < 0.001

HOMA-IR ​ 8.21 
± 10.76

11.71 
± 19.13

< 0.001

TyG index ​ 8.97 
± 0.84

9.16 ± 0.81 < 0.001

hs-CRP (mg/L) ​ 5.45 
± 8.91

7.30 
± 14.89

0.004

ACR (mg/g) ​ 10.88 
± 6.59

393.62 
± 1051.29

< 0.001

Scr (mg/dL) ​ 0.84 
± 0.23

1.27 ± 0.95 < 0.001

eGFR(mL/min/ 
1.73 m2)

​ 92.99 
± 20.01

68.15 
± 28.92

< 0.001

SUA (μmol/L) ​ 321.96 
± 87.58

362.36 
± 100.17

< 0.001

BUN (mmol/L) ​ 21.77 
± 25.87

26.26 
± 38.38

0.009

SII ​ 515.16 
± 344.57

594.77 
± 424.60

< 0.001

SIRI ​ 1.31 
± 0.96

1.70 ± 1.33 < 0.001

Hb(g/L) ​ 139.78 
± 14.28

134.57 
± 17.69

< 0.001

Table 1 (continued )

Characteristics  Non-DKD 
(n = 846) 

DKD 
(n = 575) 

P-value

ALB (g/L) ​ 41.12 
± 3.57

39.79 
± 4.01

< 0.001

ALP (IU/L) ​ 78.63 
± 27.23

85.93 
± 32.00

< 0.001

AST(U/L) ​ 24.75 
± 30.43

23.67 
± 14.05

0.423

ALT(U/L) ​ 25.90 
± 18.55

23.29 
± 16.23

0.006

TC (mg/dL) ​ 182.21 
± 47.48

172.73 
± 44.27

< 0.001

TG (mg/dL) ​ 135.02 
± 95.88

146.71 
± 127.76

0.049

HDL-C(mg/dL) ​ 49.52 
± 15.73

46.86 
± 13.68

< 0.001

LDL-C(mg/dL) ​ 105.08 
± 41.50

96.42 
± 36.58

< 0.001

GLB(g/L) ​ 30.20 
± 4.65

31.80 
± 5.33

< 0.001

LDH（U/L） ​ 144.30 
± 35.24

158.55 
± 47.64

< 0.001

Potassium(mmol/ 
L)

​ 4.05 
± 0.39

4.23 ± 0.46 < 0.001

Iron (μmol/L) ​ 14.41 
± 6.07

13.67 
± 5.52

0.020

Mean ± SD for continuous variables: P - value was calculated by the t-test.
n (%) for categorical variables: P- value was calculated by the chi-square test.
Abbreviations: PIR, poverty-income ratio; BMI, body mass index; PA, physical 
activity; MVPA: moderate-to-vigorous physical activity; HOMA-IR, homeostatic 
model assessment of insulin resistance; HbA1c, hemoglobin A1c; TyG index, 
triglyceride glucose index; hs-CRP, high-sensitivity C-reactive protein; ACR, 
albumin to creatinine ratio; Scr, serum creatinine; eGFR, estimated glomerular 
filtration rate; SUA, serum uric acid; BUN, blood urea nitrogen; SII, systemic 
immune-inflammation index; SIRI, systemic inflammation response index; Hb, 
hemoglobin; ALB, albumin; ALP, alkaline phosphatase; ALT, alanine amino
transferase; AST, aspartate aminotransferase; TC, total cholesterol; TG, tri
glycerides; HDL-C, high-density lipoprotein-cholesterol; LDL-C, low-density 
lipoprotein cholesterol; GLB, globulin; LDH, lactate dehydrogenase.
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two mVOCs (i.e., MHBMA3, PGA) in relation to DKD (P for trend <
0.05). The RCS analysis revealed a nonlinear relationship between 
2HPMA, MHBMA3, and DKD after adjusting for all covariates (P for 
nonlinearity were 0.031 and 0.011, respectively; Supplementary Fig. 1). 
As noted, MHBMA3 had an explicitly inverted U-shape relationship with 
DKD, while 2HPMA showed S-shaped dose-response curves with DKD.

PFASs were also found to be significantly linked to DKD. In model 3, 
apart from PFNA showing no correlation with DKD, PFHxS (Q2, Q3, Q4), 
n-PFOA (Q2, Q3, Q4), n-PFOS (Q3), and Sm-PFOS (Q2, Q3, Q4) were 
significantly negatively correlated with DKD, with roughly the same 
level of significance as in model 1. In the significant fourth quartile 

group, the OR values for PFHxS, n-PFOA, and Sm-PFOS were 0.32 (95 % 
CI: 0.16–0.65), 0.43 (95 %CI: 0.21–0.86), and 0.33 (95 %CI: 0.15–0.72) 
respectively. Meanwhile, the OR value for n-PFOS in the third quartile 
group was 0.49 (95 %CI: 0.24–0.99). Significant dose-response re
lationships were observed for 3 PFASs (except PFNA and n-PFOS) in 
relation to DKD (P for trend < 0.05). As shown in Supplementary Fig. 1, 
the RCS analysis indicated that the non-linear relationships between the 
five PFASs and DKD were not statistically significant (P for nonlinearity 
> 0.05).

Regarding metals and metalloid, in the unadjusted model 1, Pb (Q2, 
Q3, Q4) and Cd (Q3) were significantly positively correlated with DKD, 

Table 2 
Associations between EDCs and diabetic kidney disease, NHANES 2015–2018.

Model 1 
（OR 95 %CI）

P Model 2 
（OR 95 %CI）

P Model 3 
（OR 95 %CI）

P

mVOCs（（Log ng/mg CR））b

2HPMA ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.252 Ref. 0.103 Ref. 0.066
​ Q2 1.64（0.96, 2.81） ​ 2.44（（1.34, 4.45）） ​ 3.34（（1.59, 6.98））
​ Q3 2.05（（1.21, 3.50）） ​ 3.05（（1.68, 5.51）） ​ 3.78（（1.84, 7.77））
​ Q4 1.46（0.85, 2.50） ​ 1.89（（1.04, 3.44）） ​ 2.43（（1.12, 5.24））
MHBMA3 ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.029 Ref. 0.016 Ref. 0.006
​ Q2 1.14（0.65, 2.00） ​ 1.15（0.63, 2.09） ​ 0.95（0.46, 1.95）
​ Q3 3.12（（1.82, 5.34）） ​ 3.02（（1.69, 5.38）） ​ 2.48（（1.25, 4.96））
​ Q4 1.82（（1.06, 3.13）） ​ 2.01（（1.12, 3.63）） ​ 2.63（（1.16, 5.98））
PGA ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.008 Ref. 0.059 Ref. 0.022
​ Q2 0.87（0.51, 1.49） ​ 0.99（0.55, 1.78） ​ 1.61（0.78, 3.34）
​ Q3 1.20（0.71, 2.03） ​ 1.14（0.64, 2.05） ​ 1.43（0.69, 2.94）
​ Q4 1.86（（1.11, 3.13）） ​ 1.70（0.94, 3.06） ​ 2.59（（1.20, 5.57））
PFASs（（Log ng/mL））c

PFHxS ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.028 Ref. ＜0.001 Ref. 0.001
​ Q2 0.68（0.41, 1.13） ​ 0.48（（0.27, 0.85）） ​ 0.48（（0.25, 0.94））
​ Q3 0.51（（0.31, 0.86）） ​ 0.32（（0.18, 0.58）） ​ 0.35（（0.18, 0.70））
​ Q4 0.61（0.37, 1.01） ​ 0.34（（0.19, 0.62）） ​ 0.32（（0.16, 0.65））
n-PFOA ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.021 Ref. 0.001 Ref. 0.022
​ Q2 0.42（（0.25, 0.72）） ​ 0.36（（0.20, 0.63）） ​ 0.46（（0.23, 0.93））
​ Q3 0.48（（0.28, 0.81）） ​ 0.37（（0.20, 0.67）） ​ 0.41（（0.20, 0.83））
​ Q4 0.53（（0.32, 0.88）） ​ 0.37（（0.21, 0.67）） ​ 0.43（（0.21, 0.86））
n-PFOS ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.573 Ref. 0.063 Ref. 0.133
​ Q2 0.84（0.50, 1.39） ​ 0.73（0.42, 1.28） ​ 0.91（0.47, 1.78）
​ Q3 0.62（0.37, 1.06） ​ 0.42（（0.23, 0.77）） ​ 0.49（（0.24, 0.99））
​ Q4 0.94（0.56, 1.56） ​ 0.64（0.35, 1.17） ​ 0.67（0.32, 1.40）
Sm-PFOS ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.511 Ref. 0.007 Ref. 0.006
​ Q2 0.51（（0.30, 0.87）） ​ 0.36（（0.20, 0.65）） ​ 0.37（（0.18, 0.73））
​ Q3 0.72（0.43, 1.20） ​ 0.43（（0.24, 0.80）） ​ 0.35（（0.17, 0.73））
​ Q4 0.80（0.48, 1.35） ​ 0.39（（0.21, 0.75）） ​ 0.33（（0.15, 0.72））
Metals and metalloid（（Log ug/L））d

Pb ​ ​ ​ ​ ​ ​
​ Q1 Ref. ＜0.001 Ref. 0.001 Ref. 0.006
​ Q2 1.56（（1.11, 2.18）） ​ 1.17（0.82, 1.69） ​ 1.19（0.78, 1.82）
​ Q3 1.99（（1.42, 2.78）） ​ 1.52（（1.06, 2.18）） ​ 1.56（（1.03, 2.36））
​ Q4 2.61（（1.87, 3.64）） ​ 1.77（（1.21, 2.58）） ​ 1.76（（1.13, 2.74））
Mn ​ ​ ​ ​ ​ ​
​ Q1 Ref. 0.057 Ref. 0.546 Ref. 0.801
​ Q2 0.80（0.58, 1.10） ​ 0.83（0.59, 1.17） ​ 0.97（0.66, 1.45）
​ Q3 0.62（（0.45, 0.86）） ​ 0.69（（0.49, 0.98）） ​ 0.91（0.60, 1.36）
​ Q4 0.77（0.56, 1.06） ​ 0.93（0.65, 1.33） ​ 1.07（0.71, 1.62）

Model 1: unadjusted.
Model 2: adjusted for age, sex, race, education level, marital status, PIR, BMI.
Model 3: Model 2 + hypertension, hyperlipidemia, smoking status, alcohol intake, PA, SII, SIRI, HOMA-IR, SCR, HbA1c, SUA, BUN, hs-CRP.
b The concentrations of urine mVOCs were initially corrected for urinary creatinine and then subjected to logarithmic transformation to achieve a normal distribu
tion；
c, d The concentrations of serum PFASs, as well as blood metals and metalloid, were all log-transformed to achieve a normal distribution.
Abbreviations: EDCs, endocrine–disrupting chemicals; PFASs, perfluoroalkyl and polyfluoroalkyl substances; PIR, poverty-income ratio; BMI, body mass index; PA, 
physical activity; HOMA-IR, homeostatic model assessment of insulin resistance; HbA1c, hemoglobin A1c; hs-CRP, high-sensitivity C-reactive protein; SCR, serum 
creatinine; SUA, serum uric acid; BUN, blood urea nitrogen; SII, systemic immune-inflammation index; SIRI, systemic inflammation response index; OR, odds ratio; CI, 
confidence interval. The bold font indicated statistical significance (P＜0.05), and P represented P for trend.
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whereas Se (Q3) and Mn (Q3) were significantly negatively correlated 
with DKD, and Hg was not correlated. After adjusting for all covariates, 
only Pb (Q4, OR: 1.76, 95 % CI: 1.13–2.74) exposure remained signifi
cantly positively correlated with DKD (P for trend = 0.006). The RCS 
analysis revealed that the non-linear relationship between Pb and DKD 
was not statistically significant (P for nonlinearity was 0.962; Supple
mentary Fig. 1), and other metals showed no significant nonlinearity.

3.3. Subgroup analyses and interaction tests

After adjusting for covariates, the association between EDC 

metabolites (corrected for urinary creatinine and log-transformed) and 
DKD varied by age, sex, BMI, HbA1c, and HOMA-IR. A p-value for 
interaction < 0.05 indicates that the association between EDC metabo
lites and DKD differed across groups (Supplementary Table S3, S4, and 
Fig. 2).

Among the mVOCs, we observed a significant difference in the as
sociation between DHBMA exposure and DKD among genders (P for 
interaction = 0.029), with a significant positive association in the male 
group (OR: 25.30, 95 % CI: 2.70–237.39) and a non-significant negative 
association in the female group (OR: 0.80, 95 % CI: 0.08–7.83). Addi
tionally, we observed a significant interaction between 2HPMA and DKD 

Fig. 2. Interactive effect of gender, age, BMI, HbA1c, HOMA-IR, and EDC metabolites on DKD. The urine mVOCs were initially corrected by urinary creatinine and 
then log-transformed to achieve a normal distribution. The serum PFASs, as well as blood metals and metalloid, were all log-transformed to achieve a normal 
distribution. This analysis was carried out using the logistic regression model. Covariates included age, sex, race, education level, marital status, poverty-income 
ratio, body mass index, hypertension, hyperlipidemia, smoking status, alcohol intake, physical activity, homeostatic model assessment of insulin resistance, he
moglobin A1c, high-sensitivity C-reactive protein, serum creatinine, serum uric acid, blood urea nitrogen, systemic immune-inflammation index, systemic inflam
mation response index. Abbreviations: EDCs, endocrine–disrupting chemicals; PFASs, perfluoroalkyl and polyfluoroalkyl substances; OR, odds ratio; CI, confidence 
interval. *P < 0.05 indicated that the interaction is significant.
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in age subgroups (P for interaction = 0.037). The OR was 1.75 (95 %CI: 
0.82–3.72) for the subgroup aged ≥ 60 years and 0.32 (95 %CI: 
0.07–1.50) for the subgroup aged < 60 years. The association between 
mVOCs and DKD did not significantly vary across different BMI groups. 
No significant interactions were observed in subgroups stratified by 
HbA1c and HOMA-IR (P for interaction > 0.05), except DHBMA. In the 
subgroups with lower HbA1c and HOMA-IR, exposure to DHBMA was 
associated with a significantly higher risk of developing diabetic kidney 
disease (DKD) (OR: 15.48, 95 % CI: 1.03–231.82; OR: 22.51, 95 % CI: 
1.80–280.89).

The results indicated a highly significant intergroup difference in 
PFASs. As gender varies, a significant difference in the association be
tween PFHxS and DKD was observed (P for interaction = 0.041). 
Compared to the female group (OR: 0.79, 95 %CI: 0.35–1.78), the male 
group (OR: 0.21, 95 %CI: 0.08–0.58) exhibited a significant negative 
correlation with DKD. In addition, the association between n-PFOA and 
DKD differed significantly between age groups (P for interaction as 
0.028). In the subgroup of participants aged < 60, a significant negative 
correlation was observed between each of the five PFASs included and 
DKD. Additionally, PFHxS, PFNA, n-PFOS, and Sm-PFOS presented 
significant interactions in the BMI subgroups (P for interaction as 0.013, 
0.007, 0.011, 0.010). In participants with BMI ≥ 30 kg/m², five indi
vidual PFASs were considered to exhibit significant negative 

correlations with DKD. Additionally, HOMA-IR might be a potential 
modifier for the relationship between PFHxS， PFNA, and DKD (P for 
interaction as 0.016 and 0.010, respectively). A significant inverse as
sociation between these two PFASs and DKD was observed among par
ticipants with HOMA-IR≥ 3, whereas a positive association was noted in 
the subgroup with HOMA-IR < 3. The ORs between PFASs and DKD 
were lower in groups with higher HOMA-IR values.

The correlation between metals and metalloid exposure and DKD 
among age, gender, BMI, HbA1c, and HOMA-IR groups was not signif
icantly different.

3.4. WQS regression model to assess the association between co-exposure 
to EDCs and DKD

As shown in Supplementary Table S5, after adjusting for confound
ing factors, the WQS index for co-exposure to metals and metalloid 
+ mVOCs (OR: 2.34, 95 % CI: 1.04–5.28) and co-exposure to blood 
metals and metalloid (OR: 1.59, 95 % CI: 1.12–2.14) indicated signifi
cantly positive associations with DKD, while the WQS index for co- 
exposure to PFASs (OR: 0.66, 95 % CI: 0.44–0.98) demonstrated 
significantly negative associations with DKD. Only co-exposure to 
mVOCs (OR: 1.77, 95 % CI: 0.96–3.24) showed a positive but not sta
tistically s

Fig. 3. WQS model regression index weights in the model of co-exposure to metals and metalloid + mVOCs (A)，co-exposure to mVOCs (B)，co-exposure to PFASs 
(C)， and co-exposure to metals and metalloid (D). The urine mVOCs were initially corrected by urinary creatinine and then log-transformed to achieve a normal 
distribution. The serum PFASs, as well as blood metals and metalloid, were all log-transformed to achieve a normal distribution. All models were adjusted for age, 
sex, race, education level, marital status, poverty-income ratio, body mass index, hypertension, hyperlipidemia, smoking status, alcohol intake, physical activity, 
homeostatic model assessment of insulin resistance, hemoglobin A1c, high-sensitivity C-reactive protein, serum creatinine, serum uric acid, blood urea nitrogen, 
systemic immune-inflammation index, systemic inflammation response index.
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The estimated EDCs metabolite weights in each WQS index are 
shown in Supplementary Table S6 and Fig. 3. The chemicals with the 
highest weights in the co-exposure to metals and metalloid + mVOCs 
model were, in order, MHBMA3, SBMA, Pb, DHBMA, Mn, AAMA, Hg, 
and AMCA (weights as 0.211, 0.148, 0.107, 0.098, 0.095, 0.069, 0.065, 
and 0.051, respectively). The weights of these chemicals all exceed the 
threshold parameter, as shown by the red dotted line in the figure. The 
threshold parameter is generally defined as the reciprocal number of 
elements in the co-exposure (Carrico et al., 2015). In the co-exposure to 
metals and metalloid model, the metals with weights above the 
threshold parameter are Pb (0.408) and Mn (0.334). In the co-exposure 
to PFASs model, the weights of n-PFOA (0.331) and PFHxS (0.324) were 
higher, while the weights of n-PFOS, Sm-PFOS, and PFNA were 0.124, 
0.117, and 0.104, respectively. MHBMA3 (0.257), SBMA (0.228), AAMA 
(0.106), DHBMA (0.099), AMCA (0.088), and 2HPMA (0.076) had 
higher weights in the co-exposure to mVOCs model.

3.5. The BKMR model to assess the association between co-exposure to 
EDCs and DKD

3.5.1. Correlations between chemicals
Considering the collinearity among EDC metabolites, we calculated 

the Pearson correlation coefficients for log-transformed chemicals in 
four models: co-exposure to metals and metalloid + mVOCs, co- 
exposure to mVOCs, co-exposure to PFASs, and co-exposure to metals 
and metalloid. The results revealed strong correlations between 2MHA 
and 3,4-MHA, 3HPMA and HPMM, IPM3 and MHBMA3, IPM3 and 
HPMM, HPMM and MHBMA3 in co-exposure to mVOCs (Supplementary 
Fig. 2B). In contrast, the correlation between metals and metalloid 
+ mVOCs was weak (Supplementary Fig. 2A). The correlations among 
all five PFASs were statistically significant (P < 0.001), with Sm-PFOS 
and n-PFOS showing the strongest correlation (r = 0.88), and high 
correlations among the other chemicals (Supplementary Fig. 2 C, 
ranging from 0.56 to 0.88). In addition, the correlations between metals 

Fig. 4. Overall effect (95 % CI) of the patterns for co-exposure to metals and metalloid + mVOCs (A), co-exposure to mVOCs (B)，co-exposure to PFASs (C)， and co- 
exposure to metals and metalloid (D) on DKD by BKMR model when all the chemicals at particular percentiles were compared to all the chemicals at their 50th 
percentile. The urine mVOCs were initially corrected by urinary creatinine and then log-transformed to achieve a normal distribution. The serum PFASs, as well as 
blood metals and metalloid, were all log-transformed to achieve a normal distribution. All models were adjusted for age, sex, race, education level, marital status, 
poverty-income ratio, body mass index, hypertension, hyperlipidemia, smoking status, alcohol intake, physical activity, homeostatic model assessment of insulin 
resistance, hemoglobin A1c, high-sensitivity C-reactive protein, serum creatinine, serum uric acid, blood urea nitrogen, systemic immune-inflammation index, 
systemic inflammation response index.
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and metalloid were relatively weak (Supplementary Fig. 2D), with 
relatively high correlations between Pb and Cd. These chemicals were 
grouped based on their correlation coefficients and similar exposure 
sources.

3.5.2. Overall co-exposure effect
Fig. 4 illustrates BKMR estimated effect values of the overall effect of 

different EDCs exposure patterns on DKD. We initially fixed all chemical 
concentrations at their median and then compared the estimated effect 
values for DKD when the metabolite concentrations of these EDCs were 
at different percentiles (ranging from 0 % to 100 %). After adjusting for 
all covariates, we observed a significant positive correlation between 
DKD (odds of DKD) and having all blood metals and metalloid overall 
concentrations at the 75th percentile or above, compared to the 50th 
percentile (Fig. 4D). PFASs co-exposure showed a significant negative 
correlation with DKD compared to the median concentration (Fig. 4C). 
Although no statistically significant relationship was found between 
mVOC co-exposure and DKD, an overall upward trend was observed 
(Fig. 4B). However, no overall effect of mVOC, metals, and metalloid co- 
exposure on DKD was observed (Fig. 4A).

3.5.3. Univariate dose-responses curves
Supplementary Fig. 3 illustrates the univariate dose-response curves 

associated with the outcome (DKD) when metabolite levels of other 
EDCs are fixed at the 50th percentile. In the case of co-exposure to 
mVOCs, the prevalence of DKD increased with higher concentrations of 
3HPMA, 2HPMA, MHBMA3, PGA, and DHBMA. At the same time, it 
decreased with higher levels of IPM3 and CEMA (Supplementary 
Fig. 3B). In co-exposure to PFASs, a negative correlation was observed 
between PFHxS, n-PFOA, and Sm-PFOS and the prevalence of DKD 
(Supplementary Fig. 3C). Furthermore, DKD prevalence continued to 
increase with rising serum concentrations of Pb, Cd, and Mn. In contrast, 
Hg negatively correlated with DKD (Supplementary Fig. 3D).

3.5.4. Bivariate exposure-response curves
To investigate potential interactions between co-exposed EDC me

tabolites, we plotted bivariate exposure-response curves 
(Supplementary Fig. 4). BKMR interaction analysis revealed interactions 
among 2HPMA, 2MHA, 3HPMA, AAMA, AMCA, ATCA, Cd, Hg, IPM3, 
MHBMA3, and SBMA in the co-exposure to metals and metalloid 
+ mVOCs model when one of each pair was fixed at the 10th, 50th, and 
90th percentiles (while the rest were fixed at their medians) 
(Supplementary Fig. 4A). In contrast, no potential interaction between 
any two chemicals and DKD was observed in other co-exposure models 
(mVOCs, PFASs, metals and metalloid) (Supplementary Fig. 4B-4D).

3.5.5. The groupPIP and condPIP for co-exposure
The groupPIP and condPIP for different exposure patterns generated 

by the BKMR model are shown in Table S7. Among metals and metalloid 
+ mVOCs, the groupPIP was higher than 0.5 for both mVOCs (group 1) 
and metals and metalloid (group 2). Additionally, the contribution of 
MHBMA3 to DKD was highest in group 1 (condPIP = 0.41), whereas Pb 
was the greatest contributor in group 2 (condPIP = 0.40). For co- 
exposure to mVOCs, group 1 (MHBMA3, 3HPMA, HPMM, IPM3) had 
the highest groupPIP (0.68), with MHBMA3 contributing most signifi
cantly (condPIP = 0.62). The groupPIPs for group 2 and group 3 were 
0.49 and 0.39, respectively, with PGA (condPIP = 0.39) and CEMA 
(condPIP = 0.40) being the most significant contributors in group 2 and 
group 3, respectively. In co-exposure to PFASs, group 1 (Sm-PFOS, n- 
PFOS) had a groupPIP of 0.77, primarily contributed by Sm-PFOS 
(condPIP = 0.88). Meanwhile, group 2 (PFHxS, n-PFOA, PFNA) had a 
groupPIP of 0.68, with PFHxS making the largest contribution (condPIP 
= 0.42). The results indicated that in the co-exposure metals and 
metalloid model, group 1 exhibited a higher groupPIP (0.99), with Pb 
playing the most prominent role (condPIP = 0.99).

3.6. Mediation analysis

Based on Table S8, we further evaluated whether serum globulin 
levels and oxidative stress products (serum bilirubin, gamma-glutamyl 
transferase) mediated the positive correlation between blood Pb and 
DKD. Table S8 and Fig. 5 show that serum globulins significantly 
mediated the association between Pb and DKD, accounting for 7.25 % of 
the mediation.

4. Discussion

In this study based on NHANES 2015–2018, we applied several 
statistical methods to examine the relationship between individual EDC 
metabolites and diverse co-exposure models and DKD. Here are several 
novel findings from our study:

Firstly, both individual metals/metalloid and co-exposure to metals 
and metalloid models consistently emphasize Pb as a significant risk 
factor for DKD. In the WQS regression and BKMR models, co-exposure to 
metals and metalloid models showed a significant positive correlation 
with DKD. Additionally, globulin has been identified as a mediator of the 
positive association between Pb and DKD. According to previous 
research, declines in kidney function among middle-aged and elderly 
diabetic patients are associated with blood lead levels (Tsaih et al., 
2004). Previous studies conducted among 4234 adult diabetic patients 
in Chinese communities have shown a significant positive correlation 
between high lead levels and DKD prevalence (Wan et al., 2021). Several 
prospective studies among type 2 diabetic patients have observed that 
environmental lead exposure accelerates the decline in the glomerular 
filtration rate (Huang et al., 2013; Lin et al., 2006). A British study 
showed that renal biopsies from occupationally lead-exposed pop
ulations exhibited ultrastructural alterations in proximal tubules, 
sometimes accompanied by the formation of intranuclear inclusion 
bodies (Cramer et al., 1974). Renal tubule injury is one of the important 
markers of DKD, and it is a pathway related to glomerular dysfunction 
and the development of proteinuria and CKD (Thomas et al., 2005). In 
animal experimental models, Pb induced reactive oxygen species (ROS) 
production and weakened cellular antioxidant capacity in experimental 
rats (Liu et al., 2012). In addition, Simoes et al. proposed that Pb pro
motes oxidative stress and inflammation by activating ROS and COX-2 
through the MAPK signaling pathway and increases vascular reactivity 
(Simões et al., 2015). Microvascular damage plays a crucial role in the 

Fig. 5. Estimated proportion of the association between blood Pb and DKD 
mediated by serum globulins. The blood Pb had been log-transformed to ach
ieve a normal distribution. Covariates included age, sex, race, education level, 
marital status, poverty-income ratio, body mass index, hypertension, hyper
lipidemia, smoking status, alcohol intake, physical activity, homeostatic model 
assessment of insulin resistance, hemoglobin A1c, high-sensitivity C-reactive 
protein, serum creatinine, serum uric acid, blood urea nitrogen, systemic 
immune-inflammation index, systemic inflammation response index. Abbrevi
ations: IE, the estimate of the indirect effect; DE, the estimate of the direct ef
fect; Proportion of mediation = IE/DE + IE.
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occurrence and progression of kidney disease in diabetic patients 
(Thomas et al., 2015). It is worth noting that metals and metalloids al
ways co-exist and interact in the environment. A nationally represen
tative NHANES study indicated that blood lead, blood cadmium, and 
urinary cadmium were positively associated with DKD risk in diabetic 
patients and that there may be dose-response relationships and in
teractions in the associations of Cd, Pb with DKD (Zhang et al., 2024). 
Furthermore, for any metals or metalloids, no significant interactions 
were observed in subgroups stratified by age, gender, BMI, HbA1c, and 
HOMA-IR. In this study, two models of WQS and BKMR were used, and 
all found that the co-exposure to five blood metals and metalloid (Pb, 
Mn, Cd, Hg, Se) were significantly associated with a higher prevalence of 
DKD, further suggesting that metal exposure may promote the pro
gression of DKD.

More and more studies have shown that inflammatory response and 
abnormal activation of the immune system play an important role in the 
pathophysiology of DKD. Globulin (GLB) is a type of serum protein, both 
a product of immune response and one of the common inflammatory 
factors, including α-globulin, β-globulin, and γ-globulin. Some epide
miological studies have shown a positive correlation between GLB and 
diabetes (Lindsay et al., 2001). A study based on the American popu
lation suggested a correlation between high levels of GLB and a high 
prevalence of DKD (Wang et al., 2022). Currently, the potential mech
anisms of GLB and diabetic nephropathy are not precise. An animal 
experimental model indicated that GLB could promote the expression of 
TNF-α and IL-6, participating in the process of kidney damage (Khater 
et al., 2021). Advanced glycation end products (AGEs) are essential 
regulators in the progression of DKD (Sourris and Forbes, 2009), and 
Kostov et al. reported that anti-AGE EL IgG antibodies and anti-AGE EL 
IgM antibodies could be used as biomarkers of vascular injury in Type 2 
Diabetes (Kostov et al., 2022). In addition, recent studies have found 
that in response to Pb exposure and related diseases, the organism’s 
inflammatory response is increased, and the immune system is activated 
(Kalahasthi et al., 2022). Lead exposure promotes inflammation by 
inducing ROS production, inhibiting antioxidant enzymes, and acti
vating MAPK regulatory pathways (Jing et al., 2020). Lutz et al. inves
tigated and found that IgE levels increased significantly with increasing 
blood lead concentrations in 279 children (Lutz et al., 1999). With a 
common pathogenesis in mind, we hypothesized whether Pb exposure 
would increase the risk of DKD via serum globulin. The study’s results 
indicated that GLB significantly mediated the association between Pb 
and DKD, with the mediation proportion being 7.25 %. Thus, we con
jectured that excessive Pb exposure increases the prevalence of DKD by 
promoting inflammatory response and immune response.

Secondly, Table S9 shows that acrylamide, toluene, xylene, acrolein, 
1,3-butadiene, ethylbenzene, styrene, propylene oxide, N,N- 
dimethylformamide, cyanide, isoprene, and crotonaldehyde, among 
others, are the parent chemicals of 15 urine metabolites of volatile 
organic compounds (mVOCs) included in this study (Li et al., 2021). In 
the logistic regression model, elevated exposures to N-Acetyl-S-(2-hy
droxypropyl)-L-cysteine (2HPMA), N-Acetyl-S-(4-hydrox
y-2-butenyl)-L-cysteine (MHBMA3), and Phenylglyoxylic acid (PGA) 
were associated with an increased prevalence of DKD. MHBMA3 was 
considered the most essential chemical in both the WQS and the BKMR 
models for co-exposure models (mVOCs + metals and metalloid, 
mVOCs), with higher mVOCs concentrations associated with increased 
prevalence of DKD. N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 
(DHBMA) and MHBMA3 are urinary biomarkers of 1,3-butadiene (BD), 
with environmental tobacco smoke (ETS) being a significant source of 
BD (Nieto et al., 2021). It has been shown that MHBMA3 is a highly 
sensitive biomarker of BD in smoking populations (Chen and Zhang, 
2022). A prospective study in Korea found an association between 
increased smoking duration and decreased eGFR (Lee et al., 2021), 
while Ito et al. found a significant positive correlation between smoking 
and proteinuria (Ito et al., 2020). An animal study demonstrated that 
diabetic rats exposed to tobacco smoke exhibit higher levels of 

creatinine and urea, with a higher risk of DKD (Napierala et al., 2019). 
Additionally, in a cross-sectional study conducted on a US population, 
BD exposure was associated with an increased risk of insulin resistance 
and diabetes incidence (Liang et al., 2023). Increased insulin resistance 
was recognized as a significant indicator of renal failure (Spoto et al., 
2016). Smoking has also been reported to exacerbate oxidative stress 
and inflammatory responses in diabetic nephropathy (Agarwal, 2005). 
Many studies have indicated that tobacco smoke may promote the 
production of oxidative free radicals or elevate inflammatory factors 
such as renal interleukin (IL), tumor necrosis factor α (TNF-α), C-reac
tive protein (CRP), renal monocyte chemotactic protein-1, and neutro
phils (Agarwal, 2005; Al Hariri et al., 2016; Kayama et al., 2015; 
Rafacho et al., 2011), and even increase renal fibrosis significantly by 
upregulating transforming growth factor beta (TGF-β) and fibronectin 
(Mayyas and Alzoubi, 2019; Obert et al., 2011). Oxidative stress, in
flammatory responses, and renal fibrosis collectively accelerate struc
tural and functional damage to the kidneys in diabetic patients. 
Furthermore, an animal experiment found that ethylbenzene, as a pre
cursor chemical of mandelic acid (MA) and phenyl glyoxylic acid (PGA), 
could induce apoptosis of renal tubular cells in experimental rats 
through the mitochondrial pathway (Zhang et al., 2010). There are also 
studies showing that certain VOCs (e.g., bromodichloromethane and 
dibromochloromethane) cause impaired renal function 
(Thornton-Manning et al., 1994) and that people chronically exposed to 
benzene, toluene, and xylenes (BTX) have higher levels of urea and 
creatinine (Neghab et al., 2015). In the RCS analyses, we found inverted 
U-shaped and S-shaped associations between 2HPMA, MHBMA3, and 
DKD. As endocrine disruptors, mVOCs can influence various 
receptor-mediated responses, and these responses tend to increase and 
then decrease with increasing doses. This non-monotonic dose-response 
curve results from the combined influence of several factors, including 
receptor occupancy, differences in gene expression, and nonlinear 
pharmacokinetics(Pan et al., 2024; Welshons et al., 2003). The current 
research primarily focuses on the impact of individual chemicals on 
organisms, with more studies on volatile organic compounds (VOCs) 
related to proteinuria and eGFR in chronic kidney disease, while there is 
limited research on their association with DKD. Our study assessed the 
correlation between 15 individual mVOCs, their co-exposure, and DKD. 
Although no statistically significant difference was observed between 
co-exposure to mVOCs and DKD, a positive correlation was still evident. 
This study may provide a new perspective on the prevention of DKD and 
help fill the gaps in this area of research.

However, when investigating the correlation between co-exposure to 
mVOCs + metals and metalloid and DKD, we found that the overall co- 
exposure showed a significant positive correlation in the WQS model, 
while there was no correlation between the overall co-exposure and 
DKD in the BKMR model. Additionally, various chemicals such as 
2HPMA, 2MHA, 3HPMA, AAMA, AMCA, ATCA, Cd, Hg, IPM3, 
MHBMA3, and SBMA may exhibit potential interactions in DKD. The 
WQS model is more suitable than the individual chemicals analysis for 
identifying the main risk factors contributing to the overall body burden. 
In contrast, the BKMR model is more relevant for identifying nonlinear 
effects and interactions between chemicals (Zhang et al., 2019). In the 
co-exposure to mVOCs + metals and metalloid model, we found that 
more than half of the univariate dose-responses curves of chemicals 
showed a nonlinear trend. For example, an inverted ’U’ shape was found 
between Cd, AAMA, AMCA, and DKD. Hg, 2MHA, and IPM3 presented 
the "M" trend. So far, more and more studies have demonstrated that 
(non-) noble metal-based oxidation catalysts can degrade VOCs (Wu 
et al., 2021). Additionally, mercury can react with xylene or toluene and 
may form some organic mercury compounds such as methylmercury and 
phenylmercury (Clarkson and Magos, 2006). A study suggested that the 
kidney may take up Hg2+ through organic anion transporter proteins on 
the basal lateral plasma membrane of proximal tubule epithelial cells, or 
amino acid transporter proteins, or in the form of Hg2+-albumin com
plexes (Bridges and Zalups, 2005). We speculated that there may be 
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interactions, such as competitive binding and binding reactions between 
VOCs and metals. Further research is required to explore the interaction 
of metals and VOCs in DKD.

At the end of this study, we observed a significant negative corre
lation between PFASs and DKD, whether a individual chemical was 
analyzed in logistic regression models or co-exposure to PFASs was 
assessed using WQS and BKMR models. Several epidemiological studies 
suggested that exposure to PFASs may be associated with decreased 
renal function (Blake et al., 2018; Jain and Ducatman, 2019b). However, 
a C8 Health Project involving 53,650 Americans (including 5210 in
dividuals with diabetes) revealed a significant positive correlation be
tween PFASs and eGFR, which was more pronounced in the diabetic 
population (Conway et al., 2018). Previous cross-sectional and longi
tudinal studies from China also observed a correlation between high 
PFAS exposure and low DKD prevalence (Li et al., 2022). The specific 
mechanism behind the negative association between PFASs and DKD 
remains unclear but may involve the following hypotheses: The hyper
glycemic environment in diabetic patients may cause various metabolic 
abnormalities, leading to pathophysiological structural changes in renal 
units, which in turn result in renal tissue hypoxia (Alicic et al., 2017). 
Additionally, renal hypoxia exacerbates the progression of DKD 
(Friederich-Persson et al., 2013). Perfluorocarbons could function as 
effective oxygen carriers, with an oxygen transport capacity even 
exceeding that of hemoglobin, and can mitigate hypoxia-induced organ 
damage, playing a crucial role in organ transplantation (Hosgood and 
Nicholson, 2010; Riess, 2006; Spahn, 1999). Beyond these mechanisms, 
the complex and delayed excretion of PFASs in the human body may also 
contribute. This complex relationship is further supported by the 
inverted U-shaped trend between eGFR stages and PFASs proposed by 
Jain et al. PFASs are secreted into the urine via OAT1 transporter pro
teins in the renal tubules, where long-chain PFASs can be reabsorbed 
from the urine by OAT4 transporter proteins in the renal tubules. The 
balance between reabsorption and secretion is altered in the kidneys 
with DKD, as renal disease progression reduces the contribution of 
OAT4-mediated PFAS reabsorption compared to healthy kidneys 
(Conway et al., 2018; Jain and Ducatman, 2019a; Nakagawa et al., 
2009). An increasing body of research suggests that declining kidney 
function may involve potential reverse causation. However, further 
large-scale prospective studies and animal experiments are needed to 
explore the relationship between PFASs and DKD in more depth. The 
subgroup analyses revealed that the association between exposure to 
PFASs and the prevalence of DKD differed significantly across BMI 
groups. The negative correlation between PFASs and DKD was especially 
pronounced in individuals with a BMI of ≥ 30 kg/m². If the hypothesis 
of chronic hypoxia theory holds, PFASs have been shown to exhibit 
certain antioxidant effects (Hosgood and Nicholson, 2010; Riess, 2006; 
Spahn, 1999). These antioxidant effects are more pronounced in obese 
individuals, who experience higher levels of oxidative stress than those 
with normal weight (Furukawa et al., 2017). The association between 
PFASs and DKD varies across different HOMA-IR groups. PFASs show a 
significant negative correlation with DKD in individuals with stronger 
insulin resistance. Several studies have demonstrated a negative corre
lation between PFASs and HOMA-IR (Tian et al., 2024; Yan et al., 2023). 
Animal studies suggested that PFASs may have an affinity for PPAR-α 
and PPAR-γ receptors, acting as agonists to activate them, which regu
lates fatty acid metabolism and transcription of various insulin-related 
genes, thereby enhancing insulin sensitivity and reducing HOMA-IR 
(Ojo et al., 2020; Wolf et al., 2008).

This study has the following strengths. Firstly, it evaluated the 
relationship between multiple EDCs (both individual and co-exposure 
chemicals) and DKD. Secondly, we applied numerous statistical 
methods and adjusted for potential confounding variables to ensure 
model stability and the reliability of the results. Lastly, all the data used 
in this study came from NHANES, a database that employs a rigorous 
multi-stage randomized sampling design with strict research procedures 
and quality assurance checks. Nevertheless, there are some limitations 

to this study. First, due to the cross-sectional design, causality between 
EDCs and DKD cannot be inferred. Second, although we considered 
several important factors, it was not possible to completely exclude the 
effects of other unaccounted-for confounding factors. Third, the con
centrations of EDCs were measured only at a single time point, which 
requires a repeated measurement design to more accurately reflect in
dividual exposure levels. Fourth, although we considered the combined 
exposure effects on participants, the limited sample size prevented us 
from assessing the association between simultaneous exposure to three 
EDC metabolites (mVOCs, metals and metalloid, and PFASs) and DKD. 
The Weighted Quantile Sum (WQS) regression model has limitations, as 
it considers individual effects in only one direction and cannot simul
taneously account for both positive and negative individual effects. The 
complementary use of the Bayesian Kernel Machine Regression (BKMR) 
model helps address this limitation. Given the current study’s limita
tions, further prospective research is needed to support our findings.

5. Conclusion

In summary, after considering the results from the three regression 
models, we concluded that there was a significant positive correlation 
between metals and metalloid co-exposure and the prevalence of DKD, 
with Pb being the most important contributor. It was determined that 
serum globulin played a partial mediating role in the positive associa
tion between Pb exposure and DKD. Persistent exposure and accumu
lation of 2HPMA, MHBMA3, and PGA were significantly associated with 
an increased risk of DKD. Nonlinear positive associations between 
2HPMA, MHBMA3, and DKD were observed, with MHBMA3 showing an 
inverted U-shape and 2HPMA exhibiting S-shaped dose-response curves. 
Moreover, in co-exposure to metals, metalloid, and mVOCs, the BKMR 
model revealed potential interactions among 2HPMA, 2MHA, 3HPMA, 
AAMA, AMCA, ATCA, Cd, Hg, IPM3, MHBMA3, and SBMA in their as
sociation with DKD. Finally, individual or co-exposure to PFASs was 
significantly negatively associated with DKD, especially in obese in
dividuals (BMI ≥ 30 kg/m²). Given the cross-sectional design of this 
study and the complexity of the relationship between renal function and 
endocrine-disrupting chemicals (EDCs) in serum or urine, these findings 
should be interpreted with caution, and further research is needed to 
elucidate the potential mechanisms underlying these observations.
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